NUT ROTATION ACTUATOR CARTESIAN SYSTEM

LINEAR MOTOR CARTESIAN SYSTEM LSA= A A

www.linearachsensysteme.de

Introducing Two Multi-slider Type* Cartesian Robots

*1 A multi-slider robot consists of two sliders installed in one axis, where both sliders can be operated independently.

Combined actuator units of nut rotation type offering excellent transfer capability
The built-in servo motor in the slider turns the nut to move the actuator. Accordingly, heavy loads can be operated at high speed even at a long stroke. A desired combination can be selected from 2-axis, 3 -axis, 4 -axis (2 axes +2 axes) and 6 -axis (3 axes +3 axes) configurations.

NS - ISPA Cartesian System

Combined actuator units of linear motor type offering excellent acceleration/deceleration performance
High-thrust linear motors enable operation requiring a long stroke (up to 4155 mm) and high acceleration/deceleration (rating: 1 G)
A desired combination can be selected from 2-axis, 3-axis, 4-axis (2 axes +2 axes) and 6 -axis (3 axes +3 axes) configurations.
LSA - ISPA Cartesian System

Table of Contents

	Z-axis	X-axis	Model	Page
Nut rotation actuators	2-axis combo	Single-slider type	High-speed type ICSPA2-B1N $\square \mathrm{H}$	P5
			Medium-speed type ICSPA2-B1N $\square \mathrm{M}$	P7
		Long-stroke type	High-speed type ICSPA2-B2N $\square \mathrm{H}$	P9
			Medium-speed type ICSPA2-B2N $\square \mathrm{M}$	P11
	3-axis combo Z-axis base mount	Single-slider type	High-speed type ICSPA3-B1N $\square \mathrm{HB} 3 \square$	P13
			Medium-speed type ICSPA3-B1N \square MB3 \square	P15
		Long-stroke type (single slider)	High-speed type ICSPA3-B2N $\square \mathrm{HB} 3 \square$	P17
			Medium-speed type ICSPA3-B2N \square MB3 \square	P19
	Z-axis slider mount	Single-slider type	High-speed type ICSPA3-B1N \square HS3M	P21
			Medium-speed type ICSPA3-B1N \square MS3M	P23
		Long-stroke type (single slider)	High-speed type ICSPA3-B2N \square HS3M	P25
			Medium-speed type ICSPA3-B2N \square MS3M	P27
	4-axis combo (2 axes +2 axes)	Multi-slider type	High-speed type ICSPA4-B3N1H	P29
			Medium-speed type ICSPA4-B3N1M	P31
	6-axis combo Z-axis base mount (3 axes +3 axes)	Multi-slider type	High-speed type ICSPA6-B3N1HB3 \square	P33
			Medium-speed type ICSPA6-B3N1MB3 \square	P35
	Z-axis slider mount	Multi-slider type	High-speed type ICSPA6-B3N1HS3M	P37
			Medium-speed type ICSPA6-B3N1MS3M	P39
Linear motor actuators	2-axis combo	Single-slider type	ICSPA2-B1L $\square \mathrm{H}$	P41
	3-axis combo Z-axis base mount	Single-slider type	ICSPA3-B1L \square HB3 \square	P43
	Z-axis slider mount	Single-slider type	ICSPA3-B1L \square HS3M	P45
	4-axis combo (2 axes +2 axes)	Multi-slider type	ICSPA4-B2L1H	P47
	6-axis combo Z-axis base mount (3 axes + 3 axes) \qquad	Multi-slider type	ICSPA6-B2L1HB3 \square	P49
	Z-axis slider mount	Multi-slider type	ICSPA6-B2L1HS3M	P51
Options	Actuator options			P53
Controllers	2-axis controller		SSEL	P54
	6-axis controller		XSEL	P64

Cartesian Robots Using Nut Rotation Actuators / Large Linear Motors Supporting Long Strokes, High-speed Moves and Multiple Sliders

NS [Nut Rotation Actuator) + ISPA

*1: The load capacity changes according to the Y -axis stroke and Z -axis stroke. For details, check the page describing the type you are interested in.

LSA [Linear Motor] + ISPA

[^0]| 3 axes
 Z-axis slider mount | | | | $4 \text { axes (} 2 \text { axes }+2 \text { axes) }$ | | 6 axes (3 axes +3 axes) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | Z-axis base mount | Z-axis slider mount | |
| ICSPA3 | | | | | | ICSPA4 | | ICSPA6 | | | | | |
| B1N \square HS3M | B1N \square MS3M | B2N■ HS3M | B2N■MS3M | B3N1H B3N1M | | B3N1HB3H | B3N1HB3M | B3N1MB3H | B3N1MB3M | B3N1HS3M | B3N1MS3M |
| | | | | | | | | | | | |
| 500~ | 2200 | 2250~3000 | | $250 \sim 2250$ | | 250~2250 | | | | | |
| 200~700 | | | | 200~700 | | 200~700 | | | | | |
| 100~400 | | | | - | | 100~500 | | | | $100 \sim 400$ | |
| 2400 | 1300 | 2400 | 1300 | 2400 | 1300 | 2400 | | 1300 | | 2400 | 1300 |
| 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | | 1200 | | 1200 | 1200 |
| 600 | 600 | 600 | 600 | - | - | 1200 | 600 | 1200 | 600 | 600 | 600 |
| 11.5 | 13.0 | 11.5 | 13.0 | 21.2 | 40.0 | 9.0 | 11.2 | 9.0 | 19.0 | 11.5 | 13.0 |
| P. 21 | P. 23 | P. 25 | P. 27 | P. 29 | P. 31 | P. 33 | | $\text { P. } 35$ | | P. 37 | P. 39 |

Model Details

Encoder Type	XY combination direction (*)	Model**
Incremental	1	
	2	
	3	
	4	ICSPA2-B1L4H-I- [17-2]AQ-T2- ${ }^{3}$-(4)

* Refer to the figure below for the XY combination directions.
** Refer to the table on the right for the details of (0)to (4) in the model names shown above.

Explanation of Model Codes

No.	Description	Meaning
(1)	X-axis stroke (Note 1)	
(2)	Y-axis stroke (Note 1)	$\begin{gathered} 20: 200 \mathrm{~mm} \\ 40: 400 \mathrm{~mm} \end{gathered}$
(3)	Cable Length (Note 2)	$\begin{aligned} & \text { 3L: } 3 \mathrm{~m} \\ & 5 \mathrm{~L}: 5 \mathrm{~m} \\ & \square \mathrm{~L}: \square \mathrm{m} \\ & \hline \end{aligned}$
(4)	Y-axis cable wiring	CT : Cable track

* The above explains the details of (1) to (4) in the model names shown to the left.

XY CombinatiorDirection

Component Axes

Component Axes	Model
X-axis	LSA-W21SS-I-400- (Stroke) -T2-L-園
Y-axis	ISPA-MYM-I-200-20- (Stroke) -T2-AQ

※Enter NT1 or NT2 into (0) above.
NT1: Enter for cartesian combination direction 1 or 3
NT2: Enter for cartesian combination direction 2 or 4
Note) Nut rotation and large linear motor type require a cable track even for single-axis use, but when combined with cartesian robot, they use a different cable track. In this case the specification will be for no cable track (NT1 or NT2)

Load Capacity by Acceleration (kg) (note 3)

		Y-axis stroke				
		200	250	300	350	400
¢	$\begin{aligned} & \text { X-axis } 1.0 \mathrm{G} \\ & \mathrm{Y} \text {-axis } 0.3 \mathrm{G} \end{aligned}$	21.2	20.0	20.0	17.4	15.2

Options
Specify each applicable option code after the stroke of each axis
If you are selecting multiple options, specify them in an alphabetical order.

Name	Model	Referencepage	Remarks
AQ seal	AQ	P53	Standard Feature on Y-axis
Brake	B	P53	Limited to Y-axis
Creep sensor	C	P53	Limited to Y-axis
Home limit switch	L	P53	Standard Feature on X-axis
Opposite home specification	NM	P53	Limited to Y-axis

Common Spedications

Drive method	X-axis: Linear servo motor
	Y-axis: Ball screw, rolled, C5 equivalent
Positioning repeatability	X-axis: $\pm 0.005 \mathrm{~mm}$
	Y-axis: $\pm 0.01 \mathrm{~mm}$
Lost motion	0.02 mm or less
Guide	X-axis: Linear guide
	Y-axis: Guide integrated with the base
Base	X-axis: Material: Aluminum with black alumite treatment
	Y-axis: Material: Aluminum with white alumite treatment
X-axis motor output/lead	Equivalent to $400 \mathrm{~W} /($ none
Y-axis motor output/lead	$200 \mathrm{~W} / 20 \mathrm{~mm}$

Maximum Speed by Stroke (mm/s)

	200	300	400	$1050 \sim 4155$
X-axis	-	-	-	2500
Y-axis	1200			

	(Note 1) Strokes are indicated in cm (centimeters) in model names. (Note 2) The cable length indicates the length from the X-axis connector box to the controller. Although the standard cable is 3 m or 5 m long, other lengths can be specified in units of meters. The maximum cable length is 20 m .
Caution	(Note 3) The rated acceleration is 1 G for the X -axis and 0.3 G for the Y -axis. Although the Y-axis can operate at accelerations of up to 1 G, increasing the acceleration decreases the load capacity. (Contact IAI for load capaci- ties at higher accelerations.)

ICSPA2-B1L \square H

Dimensions

ME: Mechanical end SE: Stroke end

2D CAD

C- $\varphi 9$ through, depth 16 , counterbored (from opposite side)

Detail view of X -axis base mounting hole

Detail view of slot in X-axis base

X Stroke	1050	1185	1320	1455	1590	1725	1860	1995	2130	2265	2400	2535
A	205	72.5	140	207.5	75	142.5	210	77.5	145	212.5	80	147.5
B	5	7	7	7	9	9	9	11	11	11	13	13
C	12	16	16	16	20	20	20	24	24	24	28	28
D	105	172.5	40	107.5	175	42.5	110	177.5	45	112.5	180	47.5
E	6	6	8	8	8	10	10	10	12	12	12	14
F	14	14	18	18	18	22	22	22	26	26	26	30
G	1200	1200	1600	1600	1600	2000	2000	2000	2400	2400	2400	2800

X Stroke	2670	2805	2940	3075	3210	3345	3480	3615	3750	3885	4020	4155
A	215	82.5	150	217.5	85	152.5	220	87.5	155	222.5	90	157.5
B	13	15	15	15	17	17	17	19	19	19	21	21
C	28	32	32	32	36	36	36	40	40	40	44	44
D	115	182.5	50	117.5	185	52.5	120	187.5	55	122.5	190	57.5
E	14	14	16	16	16	18	18	18	20	20	20	22
F	30	30	34	34	34	38	38	38	42	42	42	46
G	2800	2800	3200	3200	3200	3600	3600	3600	4000	4000	4000	4400

Model Details

Encoder Type	XY combination direction（＊）	Z－axis speed type	Model＊＊
Incremental	1	H	ICSPA3－B1L1HB3H－I－（7）L－（2）AQ－（3）AQB－T2－（4）－（5）
		M	ICSPA3－B1L1HB3M－I－（1）L－（2）AQ－（3）AQB－T2－（4）－（5）
	2	H	ICSPA3－B1L2HB3H－I－（1）L－（2）AQ－（3）AQB－T2－（4）－5
		M	ICSPA3－B1L2HB3M－I－（1）L－（2）AQ－（3）AQB－T2－（4）－（5）
	3	H	ICSPA3－B1L3HB3H－I－（1）L－（2）AQ－（3）AQB－T2－（4）－（5）
		M	ICSPA3－B1L3HB3M－I－（1）L－（2）AQ－（3）AQB－T2－（4）－（5）
	4	H	ICSPA3－B1L4HB3H－I－（1）L－（2）AQ－（3）AQB－T2－（4）－（5）
		M	ICSPA3－B1L4HB3M－I－（1）L－（2）AQ－3 3 AQB－T2－（4）－（5）

＊Refer to the figure below for the XY combination directions．
＊＊Refer to the table on the right for the details of（1）to（5）in the model names shown above

Explanation of Model Codes

No．	Description	Meaning
（1）	X－axis stroke （Note 1）	$\begin{gathered} 105: 1050 \mathrm{~mm} \\ 415: 4155 \mathrm{~mm} \end{gathered}$
（2）	Y －axis stroke （Note 1）	$\begin{gathered} 20: 200 \mathrm{~mm} \\ 40: 400 \mathrm{~mm} \end{gathered}$
（3）	Z－axis stroke （Note 1）	$\begin{gathered} 10: 100 \mathrm{~mm} \\ 40: 400 \mathrm{~mm} \end{gathered}$
（4）	Cable Length （Note 2）	$\begin{gathered} 3 \mathrm{~L}: 3 \mathrm{~m} \\ 5 \mathrm{~L}: 5 \mathrm{~m} \\ \square \mathrm{~L}: \square \mathrm{m} \\ \hline \end{gathered}$
（5）	Y／Z－axis cable wiring	CT ：Cable track

The above

XY Combination Direction

Options
Specify each applicable option code after the stroke of each axis．
If you are selecting multiple options，specify them in an alphabetical order．

Name	Model	Reference page	Remarks
AQ seal	AQ	P53	Standard Feature on Y / Z－axes
Brake	B	P53	Limited to $Y /$－axes Z standard）
Creep sensor	C	P53	Limited to Y / Z－axes
Home limit switch	L	P53	Standard Feature on X－axis
Opposite home specification	NM	P53	Limited to Y / Z－axes

Common Specifications	
Drive method	X－axis：Linear servo motor
	Y－axis：Ball screw，rolled，C5 equivalent
Positioning repeatability	X－axis：$\pm 0.005 \mathrm{~mm}$
	Y－axis：$\pm 0.01 \mathrm{~mm}$
Lost motion	O．O2 mm or less
	X－axis：Linear guide
	Y／Z－axis：Guide integrated with the base
Base	X－axis：Material：Aluminum with black alumite treatment
	Y／Z－axis：Material：Aluminum with white alumite treatment
X－axis motor output／lead	Equivalent to $400 \mathrm{~W} /($ none）
Y－axis motor output／lead	$200 \mathrm{~W} / 20 \mathrm{~mm}$
Z－axis motor output／lead	$200 \mathrm{~W} / 20 \mathrm{~mm} \mathrm{(10} \mathrm{mm)}$

＊The value in parentheses applies to the Z－axis medium－speed specification．

Component Axes

Component Axes	Model
X－axis	LSA－W21SS－I－400－（Stroke）－T2－L－$⿴ 囗 十$
Y－axis	ISPA－MYM－I－200－20－（Stroke）－T2－AQ
Z－axis	ISPA－MXM－I－200－20（10）－（Stroke）－T2－AQ－B

＊Enter NT1 or NT2 into（1）above
NT1：Enter for cartesian combination direction 1 or 3
NT2：Enter for cartesian combination direction 2 or 4
Note）Nut rotation and large linear motor type require a cable track even for single－axis use， but when combined with cartesian robot，they use a different cable track．In this case the specification will be for no cable track（NT1 or NT2）
（Note 1）Strokes are indicated in cm （centimeters）in model names．
（Note 2）The cable length indicates the length from the X－axis connector box to the controller．Although the standard cable is 3 m or 5 m long，other lengths can be specified in units of meters．The maximum cable length is 20 m ．
（Note 3）The rated acceleration is 1 G for the X －axis and 0.3 G for the Y －axis and Z axis．．Although the Y －axis can operate at accelerations of up to 1 G ，in－ creasing the acceleration decreases the load capacity．（Contact IAI for load capacities at higher accelerations．）

ICSPA3-B1L \square HB3 \square

Load Capacity (kg)

$\square \mathrm{B} 1 \mathrm{~L} \square \mathrm{HB} 3 \mathrm{H}$

		Y-axis Stroke				
		200	250	300	350	400
	100	9.0			7.2	5.0
	~200	9.0	8.9		6.3	4.0
	~300	9.0	7.9		5.3	3.0
	~ 400	8.2	6.9		4.3	2.0

Maximum Speed by Stroke (mm/s)

\square B1L $\square \mathrm{HB} 3 \mathrm{H}$

	Stroke				
	100	200	300	400	$1050 \sim 4155$
	-	-	-	-	2500
	-	1200			
	1200				

$\square \mathrm{B} 1 \mathrm{~L} \square \mathrm{HB} 3 \mathrm{M}$

$\square B 1 L \square \mathrm{HB} 3 \mathrm{M}$

	Stroke				
	100	200	300	400	$1050 \sim 4155$
	-	-	-	-	2500
	-	1200			
	600				

Dimensions

You can download CAD
drawings from our website.

ME: Mechanical end
SE: Stroke end

2D

Section view of cable track
※ The dimensions in parentheses apply
to the cable track between Y and Z.

tail view of X-axis base mounting hole Detail view of slot in X-axis base

$$
\frac{\varphi 8 \mathrm{H} 7 \text {, reamed depth } 10 \text { (standard installation) }}{\text { Ex200P }}
$$

(refer to the detail view of base mounting hole)

X Stroke	1050	1185	1320	1455	1590	1725	1860	1995	2130	2265	2400	2535
A	205	72.5	140	207.5	75	142.5	210	77.5	145	212.5	80	147.5
B	5	7	7	7	9	9	9	11	11	11	13	13
C	12	16	16	16	20	20	20	24	24	24	28	28
D	105	172.5	40	107.5	175	42.5	110	177.5	45	112.5	180	47.5
E	6	6	8	8	8	10	10	10	12	12	12	14
F	14	14	18	18	18	22	22	22	26	26	26	30
G	1200	1200	1600	1600	1600	2000	2000	2000	2400	2400	2400	2800

X Stroke	2670	2805	2940	3075	3210	3345	3480	3615	3750	3885	4020	4155
A	215	82.5	150	217.5	85	152.5	220	87.5	155	222.5	90	157.5
B	13	15	15	15	17	17	17	19	19	19	21	21
C	28	32	32	32	36	36	36	40	40	40	44	44
D	115	182.5	50	117.5	185	52.5	120	187.5	55	122.5	190	57.5
E	14	14	16	16	16	18	18	18	20	20	20	22
F	30	30	34	34	34	38	38	38	42	42	42	46
G	2800	2800	3200	3200	3200	3600	3600	3600	4000	4000	4000	4400

Model Details

Encoder Type	XY combination direction（＊）	$\begin{aligned} & \text { Z-axis speed } \\ & \text { type } \end{aligned}$	Model＊＊
Incremental	1	M	ICSPA3－B1L1 HS3M－I－（17）L－（2）AQ－ 3 A AQBNM－T2－（4）－（5）
	2	M	ICSPA3－B1L2HS3M－I－（7）L－（2）AQ－ 3 （ AQBNM－T2－（4）－（5）
	3	M	ICSPA3－B1L3HS3M－I－（1）L－［2］AQ－ 3 A AQBNM－T2－（4）－［50
	4	M	

Refer to the figure below for the XY combination directions．
＊＊Refer to the table on the right for the details of 团to 夏in the model names shown above．
Explanation of Model Codes

No．	Description	Meaning
（1）	X－axis stroke （Note 1）	$\begin{gathered} 105: 1050 \mathrm{~mm} \\ 415: 4155 \mathrm{~mm} \end{gathered}$
（2）	Y－axis stroke （Note 1）	$\begin{gathered} 20: 200 \mathrm{~mm} \\ 40: 400 \mathrm{~mm} \end{gathered}$
（3）	Z－axis stroke （Note 1）	$\begin{gathered} 10: 100 \mathrm{~mm} \\ 30: 300 \mathrm{~mm} \end{gathered}$
（4）	Cable Length （Note 2）	$\begin{gathered} 3 \mathrm{~L}: 3 \mathrm{~m} \\ 5 \mathrm{~L}: 5 \mathrm{~m} \\ \square \mathrm{~L}: \square \mathrm{m} \\ \hline \end{gathered}$
（5）	Y／Z－axis cable wiring	CT ：Cable track

The above

Options

Specify each applicable option code after the stroke of each axis
If you are selecting multiple options，specify them in an alphabetical order．

Name	Model	Reference page	Remarks
AQ seal	AQ	P53	Standard Feature on Y / Z－axes
Brake	B	P53	Limited to $Y /$－axes $(Z$ standard $)$
Creep sensor	C	P53	Limited to Y / Z－axes
Home limit switch	L	P53	Standard Feature on X－axis
Opposite home specification	NM	P53	Limited to $Y /$－axes $($ standard）

Common Specifications

Drive method	X－axis：Linear servo motor
	Y－axis：Ball screw，rolled，C5 equivalent
Positioning repeatability	X－axis：$\pm 0.005 \mathrm{~mm}$
	Y－axis：$\pm 0.01 \mathrm{~mm}$
Lost motion	O．02 mm or less
	X－axis：Linear guide
	Y／Z－axis：Guide integrated with the base
Base	X－axis：Material：Aluminum with black alumite treatment
	Y／Z－axis：Material：Aluminum with white alumite treatment
X－axis motor output／lead	Equivalent to $400 \mathrm{~W} /$（none）
Y－axis motor output／lead	$200 \mathrm{~W} / 20 \mathrm{~mm}$
Z－axis motor output／lead	$200 \mathrm{~W} / 10 \mathrm{~mm}$

Component Axes

Component Axes	Model
X－axis	LSA－W21SS－I－400－（Stroke）－T2－L－（1）
Y－axis	ISPA－MYM－I－200－20－（Stroke）－T2－AQ
Z－axis	ISPA－MXM－I－200－10－（Stroke）－T2－AQ－B－NM

＊Enter NT1 or NT2 into （7）above．
NT1：Enter for cartesian combination direction 1 or 3
NT2：Enter for cartesian combination direction 2 or 4
Note）Nut rotation and large linear motor type require a cable track even for single－axis use， but when combined with cartesian robot，they use a different cable track．In this case the specification will be for no cable track（NT1 or NT2）．

	（Note 1）Strokes are indicated in cm （centimeters）in model names． （Note 2）The cable length indicates the length from the X －axis connector box to the controller．Although the standard cable is 3 m or 5 m long，other lengths can be specified in units of meters．The maximum cable length is 20 m ．
Caution	（Note 3）The rated acceleration is 1 G for the X －axis and 0.3 G for the Y －axis and Z － axis．Although the Y －axis can operate at accelerations of up to 1 G ，in－ creasing the acceration decreases the load capacity．（Contact IAl for load capacities at higher accelerations．）

ICSPA3-B1L \square HS3M

Load Capacity (kg)

\square B1L \square HS3M

		Y -axis Stroke				
		200	250	300	350	400
$\stackrel{\text { O}}{8}$	100	11.5	10.2		7.6	5.3
-	~ 200	10.5	9.2		6.6	4.3
N	~ 300	9.5	8.2		5.5	3.3

Maximum Speed by Stroke (mm/s)

	Stroke				
	100	200	300	400	$1050 \sim 4155$
	-	-	-	-	2500
	-	1200			
	600				

Dimensions

You can download CAD
drawings from our website.
ME: Mechanical end
ME: Mechanical
SE: Stroke end
2D

Section view of cablen * The dimensions in parentheses apply ※ The dimensions in parentheses apply
to the cable track between Y and Z .

$\mathrm{C}-\varphi 9$, through

X Stroke	1050	1185	1320	1455	1590	1725	1860	1995	2130	2265	2400	2535
A	205	72.5	140	207.5	75	142.5	210	77.5	145	212.5	80	147.5
B	5	7	7	7	9	9	9	11	11	11	13	13
C	12	16	16	16	20	20	20	24	24	24	28	28
D	105	172.5	40	107.5	175	42.5	110	177.5	45	112.5	180	47.5
E	6	6	8	8	8	10	10	10	12	12	12	14
F	14	14	18	18	18	22	22	22	26	26	26	30
G	1200	1200	1600	1600	1600	2000	2000	2000	2400	2400	2400	2800

X Stroke	2670	2805	2940	3075	3210	3345	3480	3615	3750	3885	4020	4155
A	215	82.5	150	217.5	85	152.5	220	87.5	155	222.5	90	157.5
B	13	15	15	15	17	17	17	19	19	19	21	21
C	28	32	32	32	36	36	36	40	40	40	44	44
D	115	182.5	50	117.5	185	52.5	120	187.5	55	122.5	190	57.5
E	14	14	16	16	16	18	18	18	20	20	20	22
F	30	30	34	34	34	38	38	38	42	42	42	46
G	2800	2800	3200	3200	3200	3600	3600	3600	4000	4000	4000	4400

Model Details

Encoder Type	XY combination direction (*)	Model**
Incremental	1	ICSPA4-B2L1H-I- (1)L- (2)AQ-T2- 3-4

to the figure below for the XY combination directions.
** Refer to the table on the right for the details of (1)to (4) in the model names shown above.

Explanation of Model Codes

No.	Description	Meaning
(1)	X-axis stroke (Note 1)	$\begin{gathered} 73: 730 \mathrm{~mm} \\ 383: 3835 \mathrm{~mm} \end{gathered}$
(2)	Y -axis stroke (Note 1)	$20: 200 \mathrm{~mm}$
(3)	Cable Length (Note 2)	3L: 3m 5L: 5m $\square \mathrm{L}: \square \mathrm{m}$
(4)	Y-axis cable wiring	CT : Cable track

* The above explains the details of (1) to (4) in the model names shown to the left.

XY Combination Direction

Component Axes

Component Axes	Model
X-axis	LSA-W21SM-I-400 - (Stroke) -T2-L-NT-1
Y1-axis	ISPA-MYM-I-200-20- (Stroke)-T2-AQ
Y2-axis	ISPA-MYM-I-200-20- (Stroke)-T2-AQ

Note) Nut rotation and large linear motor type require a cable track even for single-axis use but when combined with cartesian robot, they use a different cable track. In this case the specification will be for no cable track (NT1 or NT2)

Options

Specify each applicable option code after the stroke of each axis.
If you are selecting multiple options, specify them in an alphabetical order.

Name	Model	Referencepage	Remarks
AQ seal	AQ	P53	Standard Feature on Y-axis
Brake	B	P53	Limited to Y-axis
Creep sensor	C	P53	Limited to Y-axis
Home limit switch	L	P53	Standard Feature on X-axis
Opposite home spedication	NM	P53	Limited to Y-axis

Common Spedications

Drive method	X-axis: Linear servo motor
	Y-axis: Ball screw, rolled, C5 equivalent
Positioning repeatability	X-axis: $\pm 0.005 \mathrm{~mm}$
	Y-axis: $\pm 0.01 \mathrm{~mm}$
Lost motion	0.02 mm or less
Guide	X-axis: Linear guide
	Y-axis: Guide integrated with the base
Base	X-axis: Material: Aluminum with black alumite treatment
	Y-axis: Material: Aluminum with white alumite treatment
X-axis motor output/lead	Equivalent to $400 \mathrm{~W} /($ none $)$
Y-axis motor output/lead	$200 \mathrm{~W} / 20 \mathrm{~mm}$

Maximum Speed by Stroke (mm/s)

	200	300	400	$730 \sim 3835$
X-axis	-	-	-	2500
Y-axis	1200			

Load Capacity by Acceleration (kg) (note 3)

$$
\begin{aligned}
& \text { (Note 1) Strokes are indicated in } \mathrm{cm} \text { (centimeters) in model names. } \\
& \text { (Note 2) The cable length indicates the length from the } \mathrm{X} \text {-axis connector box to the } \\
& \text { controller. Although the standard cable is } 3 \mathrm{~m} \text { or } 5 \mathrm{~m} \text { long, other lengths can } \\
& \text { be specified in units of meters. The maximum cable length is } 20 \mathrm{~m} \text {. } \\
& \text { (Note 3) The rated acceleration is } 1 \mathrm{G} \text { for the } \mathrm{X} \text {-axis and } 0.3 \mathrm{G} \text { for the } \mathrm{Y} \text {-axis. } \\
& \text { Although the } \mathrm{Y} \text {-axis can operate at accelerations of up to } 1 \mathrm{G} \text {, increasing } \\
& \text { the acceleration decreases the load capacity. (Contact IAI for load capaci- } \\
& \text { ties at higher accelerations.) }
\end{aligned}
$$

ICSPA4-B2L \square H

X Stroke	730	865	1000	1135	1270	1405	1540	1675	1810	1945	2080	2215
A	205	72.5	140	207.5	75	142.5	210	77.5	145	212.5	80	147.5
B	5	7	7	7	9	9	9	11	11	11	13	13
C	12	16	16	16	20	20	20	24	24	24	28	28
D	105	172.5	40	107.5	175	42.5	110	177.5	45	112.5	180	47.5
E	6	6	8	8	8	10	10	10	12	12	12	14
F	14	14	18	18	18	22	22	22	26	26	26	30
G	1200	1200	1600	1600	1600	2000	2000	2000	2400	2400	2400	2800

X Stroke	2350	2485	2620	2755	2890	3025	3160	3295	3430	3565	3700	3835
A	215	82.5	150	217.5	85	152.5	220	87.5	155	222.5	90	157.5
B	13	15	15	15	17	17	17	19	19	19	21	21
C	28	32	32	32	36	36	36	40	40	40	44	44
D	115	182.5	50	117.5	185	52.5	120	187.5	55	122.5	190	57.5
E	14	14	16	16	16	18	18	18	20	20	20	22
F	30	30	34	34	34	38	38	38	42	42	42	46
G	2800	2800	3200	3200	3200	3600	3600	3600	4000	4000	4000	4400

Encoder Type	XY combination direction (*)	$\begin{aligned} & \text { Z-axis speed } \\ & \text { type } \end{aligned}$	Model**
Incremental	1	H	
		M	ICSPA6-B2L1HB3M-I- (1)L- (2)AQ- (3)AQB-T2- (4)-(5)

${ }^{\star}$ Refer to the figure below for the XY combination directions.
** Refer to the table on the right for the details of (1) 0 国 in the model names shown above.

Explanation of Model Codes

No.	Description	Meaning
(1)	X-axis stroke (Note 1)	$73: 730 \mathrm{~mm}$ $383: 3835 \mathrm{~mm}$
(2)	Y-axis stroke (Note 1)	$20: 200 \mathrm{~mm}$ $40: 400 \mathrm{~mm}$
(3)	Z-axis stroke (Note 1)	$10: 100 \mathrm{~mm}$ 40
(4)	Cable Length (Note 2)	$3 \mathrm{~L}: 3 \mathrm{~mm}$ $5 \mathrm{~L}: 5 \mathrm{~m}$ $\square \mathrm{~L}: \square \mathrm{m}$
(5)	Y/Z-axis cable wiring	CT:Cable track

The above explains the details of (9) to 囵 in the model names shown to the left.

XY Combination Direction

Options

Specify each applicable option code after the stroke of each axis.
f you are selecting multiple options, specify them in an alphabetical order

Name	Model	Reference page	Remarks
AQ seal	AQ	P53	Standard Feature on Y / Z-axes
Brake	B	P53	Limited to $Y /$-axes Z standard)
Creep sensor	C	P53	Limited to Y / Z-axes
Home limit switch	L	P53	Standard Feature on X-axis
Opposite home specification	NM	P53	Limited to $Y /$-axes $(Z$ standard)

Common Specifications

Drive method	X-axis: Linear servo motor
	Y-axis: Ball screw, rolled, C5 equivalent
Positioning repeatability	X-axis: $\pm 0.005 \mathrm{~mm}$
	Y-axis: $\pm 0.01 \mathrm{~mm}$
Lost motion	O.02 mm or less
Guide	X-axis: Linear guide
	Y/Z-axis: Guide integrated with the base
Base	X-axis: Material: Aluminum with black alumite treatment
	Y/Z-axis: Material: Aluminum with white alumite treatment
X-axis motor output/lead	Equivalent to $400 \mathrm{~W} /($ none $)$
Y-axis motor output/lead	2OO $\mathrm{W} / 20 \mathrm{~mm}$
Z-axis motor output/lead	$200 \mathrm{~W} / 20 \mathrm{~mm} \mathrm{(10} \mathrm{mm)}$

* The value in parentheses applies to the Z-axis medium-speed specification.
Component Axes

Component Axes	Model
X-axis	LSA-W21SM-I-400- (Stroke)-T2-L-NT1
Y1-axis	ISPA-MYM-I-200-20- (Stroke)-T2-AQ
Y2-axis	ISPA-MYM-I-200-20- (Stroke)-T2-AQ
Z1-axis	ISPA-MXM-I-200-20 (10)-(Stroke)-T2-AQ-B
Z2-axis	ISPA-MXM-I-200-20 (10)-(Stroke)-T2-AQ-B

| (Note 1) Strokes are indicated in cm (centimeters) in model names. |
| :--- | :--- |
| (Note 2) The cable length indicates the length from the X -axis connector box to the |
| controller. Although the standard cable is 3 m or 5 m long, other lengths can |
| be specified in units of meters. The maximum cable length is 20 m . |
| Caution and Z - |
| (Note 3) The rated acceleration is 1 G for the X -axis and 0.3 G for the Y -axis and
 axis. Although the Y -axis can operate at accelerations of up to 1 G , in-
 creasing the acceleration decreases the load capacity. (Contact IAI for load
 capacities at higher accelerations.) |

Note) Nut rotation and large linear motor type require a cable track even for single-axis use but when combined with cartesian robot, they use a different cable track. In this case the specification will be for no cable track (NT1 or NT2).

ICSPA6-B2L1HB3

Load Capacity (kg)
■ ${ }^{-} 2 L 1 H B 3 H$

		Y-axis Stroke				
		200	250	300	350	400
	100	9.0			7.2	5.0
	~ 200	9.0			6.3	4.0
	~ 300	9.0			5.3	3.0
	~ 400	8.2			4.3	2.0

Maximum Speed by Stroke (mm/s)

■ \quad 2L1HB3H

	Stroke				
	100	200	300	400	$730 \sim 3835$
	-	-	-	-	2500
	-	1200			
	1200				

■B2L1HB3M

		Y -axis Stroke				
		200	250	300	350	400
$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \text { N } \\ & \stackrel{y}{x} \\ & \underset{\sim}{n} \end{aligned}$	100	11.2	9.0		7.2	5.0
	~ 200	10.2	8.9		6.3	4.0
	~ 300	9.2	7.9		5.3	3.0
	~ 400	8.2	6.9		4.3	2.0

■B2L1HB3M

	Stroke				
	100	200	300	400	$730 \sim 3835$
	-	-	-	-	2500
	-	1200			
	600				

Model Details

Encoder Type	XY combination direction (*)	Z-axis speed type	Model**
Incremental	1	M	

* Refer to the figure below for the XY combination directions.
** Refer to the table on the right for the details of (1)to 5 in the model names shown above.

Explanation of Model Codes

No.	Description	Meaning
(1)	X-axis stroke (Note 1)	$\begin{gathered} 73: 730 \mathrm{~mm} \\ \mathrm{~s} \\ 383: 3835 \mathrm{~mm} \end{gathered}$
(2)	Y -axis stroke (Note 1)	$\begin{gathered} 20: 200 \mathrm{~mm} \\ 40: 400 \mathrm{~mm} \end{gathered}$
(3)	Z-axis stroke (Note 1)	$\begin{gathered} 10: 100 \mathrm{~mm} \\ 30: 300 \mathrm{~mm} \end{gathered}$
(4)	Cable Length (Note 2)	$\begin{aligned} & \text { 3L: } 3 \mathrm{~m} \\ & 5 \mathrm{~L}: 5 \mathrm{~m} \\ & \square \mathrm{~L}: \square \mathrm{m} \end{aligned}$
(5)	Y/Z-axis cable wiring	CT : Cable track

* The above explains the details of (1) to (5) in the model names shown to the left.

XY Combination Direction

Options

Specify each applicable option code after the stroke of each axis.
If you are selecting multiple options, specify them in an alphabetical order.

Name	Model	Reference page	Remarks
AQ seal	AQ	P53	Standard Feature on YZ-axes
Brake	B	P53	Limited to Y YZ-axes (Z standard)
Creep sensor	C	P53	Limited to Y/Z-axes
Home limit switch	L	P53	Standard Feature on X-axis
Opposite home specification	NM	P53	Limited to YIZ-axes (Z standard)

Common Spedications

Drive method	X-axis: Linear servo motor
	Y-axis: Ball screw, rolled, C5 equivalent
Positioning repeatability	X-axis: $\pm 0.005 \mathrm{~mm}$
	Y-axis: $\pm 0.01 \mathrm{~mm}$
Lost motion	0.02 mm or less
Guide	X-axis: Linear guide
	Y/Z-axis: Guide integrated with the base
Base	X-axis: Material: Aluminum with black alumite treatment
	Y/Z-axis: Material: Aluminum with white alumite treatment
X-axis motor output/lead	Equivalent to $400 \mathrm{~W} /($ none $)$
Y-axis motor output/lead	$200 \mathrm{~W} / 20 \mathrm{~mm}$
Z-axis motor output/lead	$200 \mathrm{~W} / 10 \mathrm{~mm}$

Component Axes

Component Axes	Model
X-axis	LSA-W21SM-I-400- (stroke) -T2-L-NT1
Y1-axis	ISPA-MYM-I-200-20- (stroke)-T2-AQ
Y2-axis	ISPA-MYM-I-200-20- (stroke)-T2-AQ
Z1-axis	ISPA-MZM-I-200-10- (stroke)-T2-AQ-B-NM
Z2-axis	ISPA-MZM-I-200-10- (stroke)-T2-AQ-B-NM

	(Note 1) Strokes are indicated in cm (centimeters) in model names. (Note 2) The cable length indicates the length from the X -axis connector box to the controller. Although the standard cable is 3 m or 5 m long, other lengths can be specified in units of meters. The maximum cable length is 20 m .
Caution(Note 3) The rated acceleration is 1 G for the X -axis and 0.3 G for the Y -axis and Z-axis. Although the Y -axis can operate at accelerations of up to 1 G , in- creasing the acceleration decreases the load capacity. (Contact IAI for load capacities at higher accelerations.)	

Note) Nut rotation and large linear motor type require a cable track even for single-axis use, but when combined with cartesian robot, they use a different cable track. In this case,
the specification will be for no cable track (NT1 or NT2).

ICSPA6-B2L1HS3M

Load Capacity (kg)

B2L1HS3M

		Y -axis Stroke				
		200	250	300	350	400
잉	100	11.5	10.2		7.6	5.3
$\stackrel{\square}{\square}$	~200	10.5	9.2		6.6	4.3
$\stackrel{\text { N }}{ }$	~300	9.5	8.2		5.5	3.3

Maximum Speed by Stroke (mm/s)
■B2L1HS3M

	Stroke				
	100	200	300	400	$730 \sim 3835$
X-axis	-	-	-	-	2500
Y-axis	-	1200			
Z-axis					

Explanation of Actuator Options

AQ Seal [Standard Feature] *This option cannot be installed on large linear motors.
AQ
The AQ seal is a lubrication unit that uses a lubricating member made by resin-hardened lubricating oil. As the AQ seal contacts the guide and ball screw, lubricating oil is supplied. This, combined with regular greasing, will keep the actuator maintenance-free for a long period.

Brake [Standard feature on Z-axes] *This option cannot be installed on large linear motors.

Model
 B

Explanation The brake is a holding mechanism that prevents the Z-axis slider or Z-axis itself from dropping to cause damage to the load when the power or servo is turned off. The Z-axis of each Cartesian robot comes standard with the brake.

Creep Sensor

Model C

Explanation This sensor is used on actuators of incremental specifications to shorten the time of home return operation by allowing the slider to move at high speed during home return until just before the home, and then reduce the speed to the normal home return speed once the sensor is passed. The creep sensor is installed inside the actuator housing on NS actuators. It is installed on the side face of the housing on ISPA actuators.

Home Limit Switch [Standard feature on large linear motors]

Model

Explanation
NS and ISPA actuators adopt the "push-motion method" for their home return operation, whereby the home is established upon sensing of phase Z after the slider has contacted the stopper and reversed. This optional home limit switch is used to reverse the slider during home return based on a proximity sensor signal, instead of slider contact with the stopper. Large linear motors come standard with the home limit switch.

Opposite Home Specification

Model
 NM

Explanation
On the standard specification, the home is set on the motor side (on the NS and LSA, the motor side means the side corresponding to the reamed holes in the base). However, you can specify the home to be set on the opposite side. (To change the home direction, the encoder must be adjusted. Accordingly, be sure to specify the opposite home option when placing your order. Note that multi-slider types do not support the opposite home specification.)

Guide with Ball Retention Mechanism [Standard feature] *This option cannot be installed on large linear motors.

Model RT

Explanation This ball retention mechanism achieves a long period of maintenance-free operation and longer life, thanks to the spacers inserted between the balls (steel balls) in the guide to suppress collision between the balls. NS actuators come standard with the guide with ball retention mechanism.

List of Options by Axis

	NS Actuator	ISPA Actuator	LSA Actuator
AQ seal	Standard feature	Standard feature	-
Brake	$-\left({ }^{*} 1\right)$	0	-
Creep sensor	0	0	-
Home limit switch	0	0	Standard feature
Opposite home specifikation	$-(* 2)$	0	$-\left({ }^{*} 2\right)$
Guide with ball retention mechanism	Standard feature	0	-

[^1]

Model List/Prices
A program controller capable of operating linear axes. Various controls can be performed with a single unit.

Type	C	
Name	Program mode	Positioner mode
Exterior View		
Description	The controller can communicate with the actuator and external devices without requiring any additional device. When two axes are operated, this controller lets you perform arc interpolation, path operation and synchronized operation.	Up to 20000 positioning points are supported. Push-motion operation and teaching operation are also possible.
Numberof Positions	20000	

Explanation

System Configuration

//O Specifications

\square Input External Input Specifications

Item	Specification
Input voltage	DC 24 V \pm V10\%
Input current	7 mA per circuit
ON/OFF	ON voltage (min.)
voltages	OFF voltage (max.)
Insulation method	Photo coupler

DOutput External Output Specifications

Item	Item
Load voltage	DC 24 V
Maximum load current	100 mA per point, total 400 mA for 8 points
Leak current (max.)	Max. 0.1 mA per point
Insulation method	Photo-coupler

Explanation of I/O Functions

The SSEL controller can be operated in the "program mode" where the actuator is operated by a program input to the controller, or "positioner mode" where the actuator is moved to the positions specified by signals received from a host PLC.
The positioner mode includes the five input patterns shown below to support various applications.

■ Functions by Controller Type

Operation mode		Features
Program mode		Super SEL, a language that enables programming of complex controls using simple commands, lets you perform linear/smooth interpolation operation, path movement operation ideal for coating application, etc., arch motion/palletizing operation, and many other operations with ease.
Positioner mode	Standard mode	The basic operation mode, where all you need is to a specify position number and input a start signal. Push-motion operation and 2-axis linear interpolation operation are also supported.
	Type-switching mode	In certain applications such as when multiple loads of the same shape but slightly different hole positions are handled, you can issue movement commands to the same position number by changing only the type number.
	2-axis independent mode	With a 2-axis controller, the two axes can be operated independently using separate commands.
	Teaching mode	The slider(rod) can be moved with an external signal to register the stopped position as position.data
	DS-S-C1 compatible mode	If you have been using a DS-S-C1 controller, you can replace it with an SSEL controller without having to change the host programs.* Compatibility with actuators is not assured.

Explanation of I/O Functions

Program Mode

PIN No.	Category	Port No.	Program mode	Function	Wiring diagram (NPN)*
1A	P24	-	24-V input	Connect 24-V.	
1B	Input	016	Program No. 1 selection	Select the program number corresponding to the program you want to start. (Specify a desired port from 016 to 022 using a BCD code.)	-
2A		017	Program No. 2 selection		-
2B		018	Program No. 4 selection		\bullet
3A		019	Program No. 8 selection		-
3B		020	Program No. 10 selection		
4A		021	Program No. 20 selection		-
4B		022	Program No. 40 selection		\bigcirc
5A		023	CPU reset	The system is reset and enters the same state achieved when the power has been turned off and then turned back on.	\cdots
5B		000	Start	The program corresponding to the selected port between Nos. 016 and 022 is started.	
6A		001	General-purpose input		\cdots
6B		002	General-purpose input		
7 A		003	General-purpose input		\cdots
7B		004	General-purpose input		
8A		005	General-purpose input		\cdots
8B		006	General-purpose input		
9A		007	General-purpose input		-
9B		008	General-purpose input		
10A		009	General-purpose input		
10B		010	General-purpose input		
11A		011	General-purpose input		-
11B		012	General-purpose input		
12A		013	General-purpose input		
12B		014	General-purpose input		
13A		015	General-purpose input		-
13B	Output	300	Alarm	This signal is output when an alarm has occurred. (Contact B)	
14A		301	Ready	This signal is output when the controller has started properly and become ready.	-
14B		302	General-purpose input	These signals can be turned ON/OFF freely using program commands .	
15A		303	General-purpose input		
15B		304	General-purpose input		
16A		305	General-purpose input		- -
16B		306	General-purpose input		
17A		307	General-purpose input		
17B	N	-	OV input	Connect OV.	

Standard Positioner Mode

PIN No.	Category	Port No.	Program mode	Function	Wiring diagram (NPN)*
1A	P24		24-V input	Connect 24 V .	
1B	Input	016	Position input 10	Use one of port Nos. 007 to 019 to specify the position number corresponding to the position to move the actuator to. The value can be specified by either a BCD code or binary code.	
2A		017	Position input 11		$\bullet \square$
2B		018	Position input 12		\bigcirc
3A		019	Position input 13		
3B		020	Position input 14	-	
4A		021	Position input 15	-	
4B		022	Position input 16	-	
5A		023	Error reset	This signal resets minor errors. (To reset major errors, the power must be reconnected.)	
5B		000	Start	The actuator starts moving to the position corresponding to the selected position number.	
6A		001	Home return	The actuator returns home.	
6B		002	Servo ON	The servo is turned ON/OFF.	
7A		003	Push motion	Push-motion operation is performed.	
7 B		004	Pause	The actuator pauses when this signal turn OFF, and resumes operation when the signal is turned ON.	
8A		005	Cancel	The actuator stops when this signal turns OFF, and the remaining operation is cancelled.	
8B		006	Interpolation setting	With a 2-axis system, the axes move via linear interpolation when this signal is ON.	
9 A		007	Position input 1	Use one of port Nos. 007 to 019 to specify the position number corresponding to the position to move the a ctuator to. The value can be specified by either a BCD code or binary code.	
9B		008	Position input 2		
10A		009	Position input 3		
10B		010	Position input 4		
11A		011	Position input 5		
11B		012	Position input 6		
12A		013	Position input 7		
12B		014	Position input 8		\bigcirc
13A		015	Position input 9		
13B	Output	300	Alarm	This signal is output when an alarm has occurred. (Contact B)	
14A		301	Ready	This signal is output when the controller has started properly and become ready.	
14B		302	Positioning complete	This signal is output when movement to the specified position is completed.	
15A		303	Home return complete	This signal is output when home return is completed.	8
15B		304	Servo ON output	This signal is output while the servo is ON.	
16A		305	Push-motion complete	This signal is output when push-motion operation is completed.	
16B		306	System battery error	This signal is output when the system battery voltage has dropped (to the warning level).	
17A		307	Absolute battery error	This signal is output when the absolute battery voltage has dropped (to the warning level).	-
17B	N		0 V input	Connect OV.	

Explanation of I/O Functions

Type-switching Positioner Mode

PIN No.	Category	Port No.	Program mode	Function	Wiring diagram (NPN)*
1A	P24		24-V input	Connect 24-V.	
1B		016	Position/type input 10		
2A		017	Position/type input 11		\cdots
2B		018	Position/type input 12	to the position to move the actuator to, and another to specify the type number.	\bigcirc
3A		019	Position/type input 13	Position numbers and type numbers are assigned using parameters.	\cdots
3B		020	Position/type input 14	The value can be specified by either a BCD code or binary code.	\bigcirc
4A		021	Position/type input 15		
4B		022	Position/type input 16		
5A		023	Error reset	This signal resets minor errors. (To reset major errors, the power must be reconnected.)	
5B		000	Start	The actuator starts moving to the position corresponding to the selected position number.	-
6A		001	Home return	The actuator returns home.	
6B		002	Servo ON	The servo is turned ON/OFF.	
7A	Input	003	Push motion	Push-motion operation is performed	
7 B		004	Pause	The actuator pauses when this signal turn OFF , and resumes operation when the signa is turned ON .	
8A		005	Cancel	The actuator stops when this signal turns OFF, and the remaining operation is cancelled.	
8B		006	Interpolation setting	With a 2-axis system, the axes move via linear interpolation when this signal is ON.	
9A		007	Position/type input 1		
9B		008	Position/type input 2		\bigcirc
10A		009	Position/type input 3	Use one of port Nos. 007 to 022 to specify the position number corresponding	
10B		010	Position/type input 4	to the position to move the actuator to, and another to specify the type number.	\bigcirc
11A		011	Position/type input 5	Position numbers and type numbers are assigned using parameters.	\cdots
11B		012	Position/type input 6	The value can be specified by either a BCD code or binary code.	\bigcirc
12A		013	Position/type input 7		
12B		014	Position/type input 8		
13A		015	Position/type input 9		
13B		300	Alarm	This signal is output when an alarm has occurred. (Contact B)	
14A		301	Ready	This signal is output when the controller has started properly and become ready.	5
14B		302	Positioning complete	This signal is output when movement to the specified position is completed.	
15A	Output	303	Home return complete	This signal is output when home return is completed.	
15B		304	Servo ON output	This signal is output while the servo is ON.	
16A		305	Push-motion complete	This signal is output when push-motion operation is completed.	-
16B		306	System battery error	This signal is output when the system battery voltage has dropped (to the warning level).	
17A		307	Absolute battery error	This signal is output when the absolute battery voltage has dropped (to the warning level).	-6
17B	N	-	0 V input	Connect OV.	

2-axis Independent Positioner Mode

PIN No.	Category	Port No.	Program mode	Function	Wiring diagram (NPN)*
1A	P24		$24-\mathrm{V}$ input	Connect 24-V.	
1B	Input	016	Position/type input 7	Use any of port Nos. 010 to 022 to specify the position number corresponding to the position to move the actuator to. Assignment of position numbers for axes 1 and 2 is set using parameters. The value can be specified by either a BCD code or binary code.	
2A		017	Position/type input 8		
2B		018	Position/type input 9		
3A		019	Position/type input 10		
3B		020	Position/type input 11		\bullet -
4A		021	Position/type input 12		
4B		022	Position/type input 13		
5A		023	Error reset	This signal resets minor errors. (To reset major errors, the power must be reconnected.)	
5B		000	Start 1	Axis 1 starts moving to the position corresponding to the selected position number.	
6A		001	Home return 1	Axis 1 returns home.	
6B		002	Servo ON 1	The servo of axis 1 is turned ON/OFF.	
7A		003	Pause 1	Axis 1 pauses when this signal turns OFF, and resumes the remaining operation when the signal turns ON.	
7 B		004	Cancel 1	The movement of axis 2 is cancelled.	
8A		005	Start 2	Axis 2 starts moving to the position corresponding to the selected position number.	
8B		006	Home return 2	Axis 2 returns home.	
9A		007	Servo ON 2	The servo of axis 2 is turned ON/OFF.	
9 B		008	Pause 2	Axis 2 pauses when this signal turns OFF, and resumes the remaining operation when the signal turn ON.	
10A		009	Cancel 2	The movement of axis 2 is cancelled.	
10B		010	Position input 1		
11A		011	Position input 2	Use any of port Nos. 010 to 022 to specify the position number corresponding to the position to move the actuator to. Assignment of position numbers for	$\cdots \square$
118		012	Position input 3		
12A		013	Position input 4	a BCD code or binary code.	
12B		014	Position input 5		
13A		015 300	Position input 6		
13B	Output	300	Alarm	This signal is output when an alarm has occurred. (Contact B)	
14A		301	Ready	This signal is output when the controller has started properly and become ready.	
14B		302	Positioning complete 1	This signal is output when axis 1 completes its movement to the speciified position.	
15A		303	Home return complete 1	This signal is output when axis 1 completes its home return.	-
15B		304	Servo ON output 1	This signal is output while the servo of axis 1 is ON .	
16A		305	Positioning complete 2	This signal is output when axis 2 completes its movement to the specifited position.	-
16B		306	Home return complete 2	This signal is output when axis 2 completes its home return.	
17A		307	Servo ON output 2	This signal is output while the servo of axis 2 is ON .	- 0
17B	N		OV input	Connect OV.	

Explanation of I/O Functions

Teaching Positioner Mode

PIN No.	Category	Port No.	Program mode	Function	Wiring diagram (NPN)*
1A	P24		24-V input	Connect 24 V	
1 B	Input	016	Axis 1 JOG-	Axis 1 moves in the negative dire ction while this signal is input.	
2A		017	Axis $2 \mathrm{JOG}+$	Axis 2 moves in the positive direction while this signal is input.	
2 B		018	Axis 2 JOG -	Axis 2 moves in the negative dire ction while this signal is input.	
3A		019	Inching specification (0.01 mm)	Specify the distance to be traveled by inching. (The travel represents the sum of values specified for port Nos. 019 to 022.)	
3B		020	Inching specification (0.1 mm)		
4A		021	Inching specitication (0.5 mm)		
4B		022	Inching specification (1 mm)		
5A		023	Error reset	This signal resets minor errors. (To reset major errors, the power must be reconnected.)	
5B		000	Start	The actuator starts moving to the position corresponding to the selected position number.	
6A		001	Servo ON	The servo is turned ON/OFF.	
6B		002	Pause	The actuator pauses when this signal turns OFF, and resumes operation when the signal is turned ON.	
7A		003	Position/type input 1	Use any of port Nos. 003 to 013 to specify the position number corresponding to the position to move the actuator to, and another to specify the position number under which to input the current position. When port No. 014 for teaching mode specification is ON, turning ON port No. 000 for start signal writes the current value to the specified position number.	
7 B		004	Position/type input 2		
8A		005	Position/type input 3		
8B		006	Position/type input 4		
9A		007	Position/type input 5		
9 B		008	Position/type input 6		-
10 A		009	Position/type input 7		
10B		010	Position/type input 8		
11A		011	Position/type input 9		
11B		012	Position/type input 10		
12A		013	Position/type input 11		
12 B		014	Teaching mode specification		
13A		015	Axis 1 JOG +	Axis 1 moves in the positive dire ction while this signal is input.	
13B	Output	300	Alarm	This signal is output when an alarm has occurred. (Contact B)	
14A		301	Ready	This signal is output when the controller has started properly and become ready	-
14B		302	Positioning complete	This signal is output when movement to the specified position is completed.	
15A		303	Home return complete	This signal is output when home return is completed.	
15B		304	Servo ON output	Servo ON output	
16A		305	-	- -	-
16B		306	System battery error	This signal is output when the system battery voltage has dropped (to the warning level).	
17A		307	Absolute battery error	This signal is output when the absolute battery voltage has dropped (to the warning level).	\%
17B	N		OV input	Connect OV.	

DS-S-C1 Compatible Positioner Mode

External Dimensions

SSEL 1-axis controller

(Note 1) Absolute-data backup battery. This battery is not installed in incremental controllers.

SSEL 2-axis controller

(Note 1) Absolute-data backup battery. This battery is not installed in incremental controllers.

19

20

9

Status indicator LEDs

These LEDS indicate the operating condition of the controller Each LED and what it indicates are explained below:

PWR : The controller is receiving power.
RDY : The controller is ready to perform program operation.

ALM : The controller is abnormal.
EMG : An emergency stop has been actuated and the drive source is cut off.

SV1 : The servo of actuator axis 1 is ON .
SV2 : The servo of actuator axis 2 is ON .

System I/O connector

This connector is used to connect the emergency stop/ enable input, brake power input, etc.

3 Teaching pendant connector

This half-pitch, IO26-pin connector is used to connect the teaching pendant when the operation mode is MANU. You need a dedicated conversion cable to connect a conventional D-sub, 25-pin connector.

Mode switch

This switch is used to specify the operation mode of the controller. The controller is in the MANU (manual operation) mode when the switch is in the left position, or AUTO (auto operation) mode when the switch is in the right position. Teaching operation can be performed only in the MANU mode. Also note that the controller cannot perform auto operation using external IOs in the MANU mode.

5 USB connector

This connector is used to establish USB connection with a PC While the USB connector is in use, the TP connector cannot be used because communication via this connector is disconnected.

6 IO connector

This connector is used to connect the interface I/Os. If the DIO (24IN/8OUT) interface is specified, the I/O con-nector accepts a 34 -pin flat cable. The I/O power is also supplied to the controller through this connector (pins 1 and 34).

7 Panel unit connector
This connector is used to connect the panel unit (optional) for displaying the controller status and error numbers.

8 Absolute-data backup battery
When an absolute axis is operated, this battery is used to retain the position data even after the power is cut off.

System-memory backup battery (optional)
This battery is required if you want to retain the various data stored in the built-in SRAM of the controller even after the power is cut off. This battery is optional. Order it separately if required.

10 Power-supply connector

A connector for AC power supply. The control power and motor power are input separately.

11 Grounding screw

A screw for protective grounding. Be sure to connect this screw to ground.
12 External regenerative resistor connector This connector is used to connect an additional regenerative resistor that is connected when the built-in regenerative resistor is not enough due to high acceleration, high load, etc.

13 Axis 1 motor connector

The motor cable of actuator axis 1 is connected here.

14 Axis 2 motor connector

The motor cable of actuator axis 2 is connected here.

15 Axis 1 brake switch

This switch is used to release the axis brake. Setting the switch to the left (RLS) position forcibly releases the brake, while setting it to the right (NOM) position allows the controller to control the brake automatically.

16 Axis 2 brake switch

This switch is used to release the axis brake. Setting the switch to the left (RLS) position forcibly releases the brake, while setting it to the right (NOM) position allows the controller to control the brake automatically.

Axis 1 encoder connector

The encoder cable of actuator axis 1 is connected here

18 Axis 2 encoder connector

The encoder cable of actuator axis 2 is connected here

9 Axis 1 absolute battery connector

This connector is used to connect the absolute-data backup battery for axis 1 when the actuator is equipped with an absolute encoder.

0 Axis 2 absolute battery connector

This connector is used to connect the absolute-data backup battery for axis 2 when the actuator is equipped with an absolute encoder. System-memory backup battery connector This connector is used to connect the system-memory backup battery.

Options

Teaching Pendant

- Features A teaching device offering functions for program/position input, test operation, monitoring, and more.
- Models/Prices

Model	Description
SEL-T-J	Standard type with connector conversion cable
SEL-TD-J	Deadman switch type with connector conversion cable

- Configuration

Conversion Cable: CB-SEL-SJ002
. Specification

Item	SEL-T-J	SEL-TD-J
3-position enable switch	Not equipped	Equipped
ANSI/UL standard	Not compliant	Compliant
CE Mark	Compliant	
Display	20 characters $\times 4$ lines	
Surrounding air temp / humidity	$0-40 \mathrm{C}, 10-90 \%$ RH (non-condensing)	
Protection structure	IP54	
Weight	Approx 0.4 kg (excluding cables)	

PC Software (Windows only)

- Features A software application that assists you in the initial startup of your system by offering functions for program/position input, test operation, monitoring, and more. Enhanced debugging functions help reduce the startup time.
- Models IA-101-X—MW—J (with RS232C cable + connector conversion cable) IA - 101-X - MW (with RS232C cable + connector conversion cable)
- Configuration

- Model IA - 101 - X - USB (with USB cable)

PC Software (CD)

Note
SSEL controllers support only Version 6.0.0.0 or later.

Regenerative Resistor Unit

- Features A unit for converting to heat the regenerative current produced when the motor I RRU Determination Guide
decelerates. Check the total wattage of the operated actuators in the table on the right and provide a regenerative resistor or resistors if necessary.
- Model REU-2 (for SCON/SSEL)
- Specifications

Weight	0.9 kg
Built-in regenerative resistor	$220 \Omega \quad 80 \mathrm{~W}$
Unit-controller connection cable (accessory)	$\mathrm{CB}-\mathrm{SC}-$ REU010 (for SSEL)

 required number of regenerative resistor(s) may
become more than the applicable number shown
If two regenerative units are required, order one REU-2 and one REU-1 (refer to P. 70).

Panel Unit

- Features A display that lets you check controller error codes and the program number of the current program.
- Model REU-2

Absolute Data Backup Battery

- Features An absolute-data backup battery used when an absolute actuator is operated
The battery is the same as the system-memory backup battery.
Model AB-5

- External Dimensions

System-memory Backup Battery

- Features This battery is required if you are using global flags, etc., in the program and want to retain the data even after the power is turned off.
- Model AB-5-CS (with case) $A B-5$ (battery)

Options

Dummy Plug

－Features A plug to be connected to the teaching port to cut off the enable circuit when the SSEL controller is connected to a PC via a USB cable （This plug is supplied with the PC software IA－101－ X－USB．）
－Model DP－3

USB Cable

－Features A cable for connecting a controller with USB port to a PC．
To connect a controller without USB port（XSEL）to a PC，connect the controller＇s RS232C cable to a USB cable via a USB conversion adapter，and connect the SB cable to the USB port on the PC．
－Model CB－SEL－USB010（（cable length 1 m ）

Connector Conversion Table

Features A conversion cable for connecting the D－sub，25－pin connector for teaching pendant／PC software to the teaching connector（half－pitch）on the SSEL controller

Model CB－SEL－SJ002（cable length 0.2 m ）

Replacement Parts

I／O Flat Cable

Model CB－DS－PIO $\square \square \square$

ロロロ
desires the cable length（L）．You can specify a

Model List/Prices

A multi-axis program controller capable of operating 230 VAC linear axes. Up to six axes can be controlled simultaneously.

Type	P	Q
Name	Large-capacity standard type	Large-capacity global type (safety category specification)
Exterior View		
Description	A large-capacity type capable of controlling up to six axes.	A large-capacity type conforming to safety category 4.
Max number of controlled axes	6-axes	
Number of Positions	20000 positions	
Maximum total wattage of connected axes	1600/2400 W	
Power supply	Single-phase 230 VAC/three-phase 230 VAC	
Safety category	B	4 (with additional circuit)
Safety standards	CE	CE, ANSI

Explanation

64

System Configuration

I/O Wiring

Input External Input Specification (NPN Specification)

Item	Specification				
Input voltage	DC24V $\pm 10 \%$				
Input current	7 mA per circuit				
ON/OFF voltages	ON voltage- Min. 16.0 VDC / OFF voltage- Max. 5.0 VDC				
Insulation method	(Photo-coder insulation)				
Externally connected devices	[1] No-voltage contacts (with a minimum load of approx. $5.0 \mathrm{VDC} / 1 \mathrm{~mA}$) [2] Photo-electric/proximity sensors (NPN type) [3] Sequencer transistor outputs (open-collector type) [4] Sequencer contact outputs (with a minimum load of approx. $5 \mathrm{VDC} / 1 \mathrm{~mA})$				
[Input circuit]					
Externalpower $+10 \%$ DC24 \qquad				$\begin{array}{c\|} \hline \mathrm{K} \text { type } \\ \hline 1024 \mathrm{~V} \text { connector } \\ 24 \mathrm{VIN} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { P/Q types } \\ \hline \text { Ointefface } \\ \text { PinNo. } 1 \\ \hline \end{array}$

- Input External Intput Specification (PNP Specification)

Item	Specification
Input voltage	DC24V $\pm 10 \%$
Input current	7 mA per circuit
ON/OFF voltages	ON voltage- Min. 8 VDC/ OFF voltage- Max. 19 VDC
Insulation method	(Photo-coder insulation)
Externally connected devices	$[1]$
[2]-voltage contacts (whith a melectric/proximity sensors (PNP load of approx. $5.0 \mathrm{VDC} / 1 \mathrm{~mA}$)	
[3] Sequencer transistor outputs (open-collector type)	
[4] Sequencer contact outputs (with a minimum load of approx. $5 \mathrm{VDC} / / \mathrm{mA})$	

[Input circuit]

- Output External Input Specification (NPN Specification)

Item	Specification	
Load voltage	DC24V	
Maximum load current	100 mA per point, 400 mA peak (total current)	TD62084 (or equivalent) is used
Leak current (max.)	Max. 0.1mA per point	
Insulation method	(Photo-coder insulation)	
Externally connected devices	[1] Minature relays [2] Sequencer input units	

■ Output External Output Specification (PNP Specification)

Item	Specification	
Load voltage	DC24V	
Maximum load current	100 mA per point, 400 mA for 8 ports*	TD62784 (or equivalent) is used
Leak current(max.)	Max. 0.1 mA per point	
Insulation method	(Photo-cor	

o-

Externally connected devices	[1] Minature relays [2] Sequencer input units

* (Note) The maximum total load current is 400 mA for every eight ports from output port No. 300. (The maximum total load current of output port No. $300+n$ to $300+n+7$ is 400 mA ; where n is 0 or a multiple of 8 .)

//O Signal Tables									
Standard I/O Signal Table (when N1 or P1 is selected)				Expansion I/O Signal Table (when N1 or P1 is selected)			Expansion I/0 Signal Table (when N 1 or P 1 is selected)		
Pin No.	Category	Port No.	Standard Setting	Pin No.	Category	Standard Setting	Pin No.	Category	Standard Setting
1		-	P/Q types: $24-\mathrm{V}$ connection/K type: NC)	1		(P/Q types: 24V connection/K type: NC)	1		(P/Q/ types: $24-\mathrm{V}$ connection/K type: NC)
2		000	Program start	2		General purpose input	2		General purpose input
3		001	General purpose input	3		General purpose input	3		General purpose input
4		002	General purpose input	4		General purpose input	4		General purpose input
5		003	General purpose input	5		General purpose input	5		General purpose input
6		004	General purpose input	6		General purpose input	6		General purpose input
7		005	General purpose input	7		General purpose input	7		General purpose input
8		006	General purpose input	8		General purpose input	8		General purpose input
9		007	Program specification(PRG No. 1)	9		General purpose input	9	Irput	General purpose input
10		008	Program specification(PRG No. 2)	10		General purpose input	10		General purpose input
11		009	Program seecification(PRG No. 4)	11		General purpose input	11		General purpose input
12		010	Program specification(PRG No. 8)	12		General purpose input	12		General purpose input
13		011	Program specification(PRG No. 10	13		General purpose input	13		General purpose input
14		012	Program peocitication(PRG No. 20)	14		General purpose input	14		General purpose input
15		013	Program peocitication(PRG No. 40)	15		General purpose input	15		General purpose input
16		014	General purpose input	16		General purpose input	16		General purpose input
17	Input	015	General purpose input	17	input	Generalpurpose input	17		Generalpurpose input
18		016	General purpose input	18		General purpose input	18		General purpose output
19		017	General purpose input	19		General purpose input	19		General purpose output
20		018	General purpose input	20		General purpose input	20		General purpose output
21		019	General purpose input	21		General purpose input	21		General purpose output
22		020	General purpose input	22		General purpose input	22		General purpose output
23		021	General purpose input	23		General purpose input	23		General purpose output
24		022	General purpose input	24		General purpose input	24		General purpose output
25		023	General purpose input	25		General purpose input	25		General purpose output
26		024	General purpose input	26		General purpose input	26		General purpose output
27		025	General purpose input	27		General purpose input	27		General purpose output
28		026	General purpose input	28		General purpose input	28		General purpose output
29		027	General purpose input	29		General purpose input	29		General purpose output
30		028	General purpose input	30		General purpose input	30		General purpose output
31		029	General purpose input	31		General purpose input	31		General purpose output
32		030	General purpose input	32		General purpose input	32		General purpose output
33		031	General purpose input	33		General purpose input	33		General purpose output
34		300	Alarm output	34		General purpose output	34	Output	General purpose output
35		301	Ready output	35		General purpose output	35		General purpose output
36		302	Emergency st¢ output	36		General purpose output	36		General purpose output
37		303	General purpose output	37		Generalpurpose output	37		Generalpurpose output
38		304	General purpose output	38		General purpose output	38		General purpose output
39		305	General purpose output	39		General purpose output	39		General purpose output
40		306	General purpose output	40		General purpose output	40		General purpose output
41		307	General purpose output	41		General purpose output	41		General purpose output
42	Output	308	General purpose output	42	Output	General purpose output	42		General purpose output
43		309	General purpose output	43		General purpose output	43		General purpose output
44		310	General purpose output	44		General purpose output	44		General purpose output
45		311	General purpose output	45		General purpose output	45		General purpose output
46		312	General purpose output	46		General purpose output	46		General purpose output
47		313	General purpose output	47		General purpose output	47		General purpose output
48		314	General purpose output	48		General purpose output	48		General purpose output
49		315	General purpose output	49		General purpose output	49		General purpose output
50		区	(P/Q types: OV connection/K type: NC)	50		(P/Q types: oV connection/K type: NC)	50		(P/Q types: oV connection/K type: NC)

Specification Table

■ P (Standard Type)/Q (Global Type Conforming to Safety Category)

Item	Description											
Controller series/type	P (Standard) Type						Q (Global) Type					
Connectable actuators	RCS2/ISA/ISPA/ISP/ISDA/ISDACR//SPDACR/IF/FS/RS/LSA											
Applicable motor output	20/30/60/100/150/200/300/400/600/750											
Number of controlled axes	1 axis	2 axes	3 axes	4 axes	5 axes	6 axes	1 axis	2 axes	3 axes	4 axes	5 axes	6 axes
Maximum output of connected axes	Max. 2400W (1600 W for single-phase, 230-VAC specification)											
Controller power input	200/230-VAC, single-phase - $15 \%+10 \%$						200/230-VAC, single-phase - 15\% + 10\%					
Motor power input	200/230-VAC, single-phase/three-phase - $10 \%+10 \%$						200/230-VAC, single-phase/three-phase - 10\% + 10\%					
Power-supply frequency	$50 / 60 \mathrm{~Hz}$											
Insulation resistance	$10 \mathrm{M} \Omega$ or more (@ 500 VDC , measured between the power-supply terminal and each I/O terminal and between all external terminals and the case)											
Withstand voltage	1500 VAC (1 minute)						1500 VAC (1 minute)					
Power-supply capacity (*1)	$\begin{gathered} \text { Max } \\ \text { 1744VA } \end{gathered}$	$\begin{gathered} \mathrm{Max} \\ 3266 \mathrm{VA} \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { 4787VA } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { 4878VA } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { 4931VA } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { 4998VA } \end{gathered}$	$\begin{gathered} \mathrm{Max} \\ \text { 1744VA } \end{gathered}$	$\begin{gathered} \text { Max } \\ 3266 \mathrm{VA} \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { 4787VA } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { 4878VA } \end{gathered}$	$\begin{gathered} \mathrm{Max} \\ \text { 4931VA } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { 4998VA } \end{gathered}$
Position detection method	Incremental encoder (wire-saving type) Multi-rotational data backup absolute encoder (wire-saving type)											
Complete circuit structure	Redundancy not supported						Redundancy supported					
Drive-source cutoff method	Internal relay cutoff						External safety circuit					
Enable input	Contact B input (Internal power-supply type)						Contact B input (External power-supply type, redundant)					
Speed setting	$1 \mathrm{~mm} / \mathrm{sec} \sim$ Maximum setting varies depending on the actuator's specifications											
Acceleration/Deceleration setting	$0.01 \mathrm{G} \sim$ Maximum setting varies depending on the actuator's specifications											
Program language	Super SEL Language											
Number of programs	128											
Number of program steps	9999											
Number of multitask programs	16											
Number of positions	20000											
Data storage device	FLASH ROM + SRAM battery backup											
Data input method	Teaching pendant or PC											
Standard I/Os	I/O 48 points PIO board (NPN/PNP), // 96 points PIO board (NPN/PNP) - 1 board can be installed											
Expansion I/Os	1/O 48 points PIO board (NPN/PNP), 1/O 96 points PIO board (NPN/PNP) - Up to 3 boards can be installed											
Serial communication function	Teaching port (D-sub 25-pin, +2 chRS232C port (D-sub 9-pin $\times 2$) - Standard equipment											
Protective functions	Motor overcurrent, overload, motor-driver temperature check, overload check, encoder-open detection, soft limit over, system error, battery error, etc.											
Ambient operating temperature, humidity	9-40 ${ }^{\circ} \mathrm{C} / 10-95 \%$											
Weight (*2)	5.2 kg					5.7 kg			4.5 kg			5 kg
Accessory	/ O flat cable											

External Dimensions
■ (Large-capacity Standard Type)/Q (Large-capacity Global Type)
With the XSEL-P/Q types, the shape and dimensions vary according to the controller specifications (encoder type, with/without brake, and with/without I/O expansion).
The four shapes shown below are available. Check the applicable dimensions based on the desired type and number of axes.

Name of Each Part

FG connection terminal

A connection end for connecting the FG terminal of the enclosure. The PE terminal of the AC input part is connected to the enclosure inside the controller.

2 External regenerative unit connector

This connector is used to connect an additional regenerative resistor unit that is connected when the built-in regenerative resistor is not enough due to high acceleration, high load, etc. Whether or not an external regenerative resistor is required depends on the specifics of the application such as the axis configuration.

3 AC-power input connector

A 230-VAC, 1-/3-phase input connector. This connector has six terminals including the motor/control power terminals and PE terminal.
The standard specification only comes with a terminal block.
Note To prevent electric shock, do not touch this connector while the power is supplied.

4 Control-power monitor LEDA

A green light is lit when the control power supply is generating the internal controller power properly.

5 Absolute-battery enable/disable switch

A switch to enable/disable the encoder backup operation using the absolute battery. The factory setting is to disable the backup operation. After connecting the encoder/ axis-sensor cables, turn on the power and then set the switch to the top position.

6 Encoder/axis-sensor connector

A connector for the actuator encoder and axis sensors such as LS, CREEP and OT. *(LS, CREEP and OT sensors are optional.)

7 Motor connector

A connector for driving the motor in the actuator.

8 Teaching-pendant type selector switch

This switch is used to change the type of the teaching pendant to be connected to the teaching connector 9 . You can switch between IAl's standard teaching pendant and ANSI teaching pendant. Set the switch on the front side of the board according to the teaching pendant you are using.

9 Teaching connector

This teaching interface is used to connect IAI's teaching pendant or a PC (PC software) to operate, set or otherwise manipulate your system.

10 System I/O connector

This I/O connector controls the safety operations of the controller. For controllers of global specification, a safety circuit meeting up to safety category 4 can be configured using this connector together with an external safety circuit.

11 Panel window

This window consists of a 4-line, 7-segment LED display and five LED lamps, all indicating the status of your system.

Q type (with absolute brake unit + expansion base, 6-axis)

Meanings of five LEDs

Name	Status when LED is lit
RDY	The CPU is ready (to perform program operation).
ALM	A CPU alarm (system-shutdown level error) or CPU hardware error is present.
EMG	An emergency stop has been actuated or a CPU or power-supply hardware error is present.
PSE	A power-supply hardware error is present.
CLK	The system clock is abnormal.

12 Mode switch

This alternate switch with lock is used to indicate the operation mode of the controller. To operate this switch, pull the switch toward you and then tilt it to a desired position. The top position corresponds to the MANU (manual) mode, while the bottom position corresponds to the AUTO (auto) mode. Teaching operation can be performed only in the MANU mode. Also note that auto program start is not supported in the MANU mode.

13 Standard I/O connector

This alternate switch with lock is used to indicate the operation mode of the controller. To operate this switch, pull the switch toward you and then tilt it to a desired position. The top position corresponds to the MANU (manual) mode, while the bottom position corresponds to the AUTO (auto) mode. Teaching operation can be performed only in the MANU mode. Also note that auto program start is not supported in the MANU mode.

Item	Description
Connector name	I/O
Applicable connector	Flat connector, 50-pin
Power supply	Power is supplied from connector pin Nos. 1 and 50.
Inputs	32 points (including general-purpose and dedicated inputs).
Outputs	16 points (including general-purpose and dedicated outputs).
Connected to	External PLC, sensor, etc.

14 General-purpose RS232C port connector
A port to connect general-purpose RS232C devices (two channels are available).

15 Field-network board slot

Install a field-pass interface module in this slot.

16 Expansion I/O board (optional)

Install an optional expansion l/O board in this slot.

Brake-power input connector

A power input connector for driving the brake in the actuator. 24 VDC must be supplied externally. If the specified power is not supplied, the actuator brake cannot be released. Be sure to supply the brake power for axes with brake. Use a shielded cable for the brake power cable and connect the shield on the 24-V power supply side.

18 Brake-release switch connector

This connector is used to connect a switch for releasing the actuator brake from outside the controller. The brake can be released by shorting the COM terminal and BKMRL* terminal of this connector. Use this connector if you want to operate the actuator manually when the controller power has been cut off or any other error is present.

19 Brake switch

This alternate switch with lock is used to release the axis brake. To operate this switch, pull the switch toward you and then tilt it to a desired position. The brake is forcibly released when the switch is in the top (RLS) position, or controlled automatically by the controller when the switch is in the bottom (NOM) position.

Options

- Regenerative Resistor Unit

Absolute-data Backup Battery (for XSEL-KE/KET)

- Absolute-data Backup Battery

Features

AB-5

An absolute-data backup battery used when absolute actuators are operated.

Expansion PIO Board

Description An optional board you can use to increase the number of I / O (input/ output) points.
On general-purpose/large-capacity controllers, up to three expansion PIO boards can be installed in the expansion slots.
(On small controllers, only one expansion PIO board can be installed in the expansion slot, provided that the controller is of $3 / 4$-axis type.)

DeviceNet Connection Board

A board for connecting the XSEL controller to DeviceNet.

Item	Specification			
Number of I/O points	1 board with 256 input points/256 output points * Only one board can be installed.			
Communication	A certified DeviceNet 2.0 interface module is used (certification pending).			
	Group 2 only server			
	Insulated node of network-power operation type			
Communication specifications	Master-slave connection		Bit strobe	
			Polling	
			Cyclic	
Baud rate	$500 \mathrm{k} / 250 \mathrm{k} / 125 \mathrm{kbps}$ (switchable using DIP switches)			
Communication cable	Baud rate	Max. nelwork length	Max. brand length	Total branch length
	500 kbps	100 m	6 m	39 m
	250kbps	250 m		78 m
	125 kbps	500 m		156 m
	Note) When a thick DeviceNet cable is used.			
Communicatiopower spply	24 VDC (supplied from DeviceNet)			
Current consurption	60 mA or more			
Number doccupied nodes	1 node			
Connector	MSTBA2.5/5-G.08AUM by Phoenix Contact (*1)			

- Expansion SIO Board (General-purpose type)

Model/ IA-105-X-MW-A (RS232C connection) (board with joint cable [1] x 2) Specification IA-105-X-MW-B (RS422C connection) (board with joint cable [2] x 1) IA-105-X-MW-C (RS485C connection) (board with joint cable [2] x 1)

Description A board for serial communication with an external device. This board has two channels and supports one of three communication formats according to the supplied joint cable.

Joint cable[1] Model: CB-ST-232J001

- CC-Link Connection Board

A board for connecting the XSEL controller to CC-Link.

Item	Specification					
Number f V O points	1 board with 256 input points/256 output points *Only one board can be installed.					
Communication protocol	ACC-Link Version 1.10 (certified)					
Baud rate	10M/5M/2.5M/625k/156kbps (switchable using a rotary switch)					
Communication method	Communication method					
Synhronization mehod	Frame synchronization method					
Encoding method	NRZI					
Transmissiorpath format	Bus type (conforming toEIA RS485)					
Transmissiorformat	Conforming toHDLC					
Error control method	$\mathrm{CRC}\left(\mathrm{X}^{16}+\mathrm{X}^{12}+\mathrm{X}^{5}+\mathrm{X} 1\right)$					
Number foccupied stations	1 to 3 stations(remote device stations)					
Communication cable length	Baud rate (bps)	10 M	5 M	2.5 M	625 k	
	Cable length (m)	100	160	400	900	
Connector(controller end)	MSTBA2.5/5-G.08AUM by Phoenix Contact (*1)					

(*1) The cable-end connector (SMSTB2.5/5-ST-5.08AU) by Phoenix Contact) is a standard accessory.

Options

Teaching Pendant

- Features A teaching device offering functions for program/ position input, test operation, monitoring, and more.
- Model

Model	Description
SEL-T	Standard Type
SEL-TD	Deadman Switch Type

Configuration

-Specification			
Item		SE-T	SE-TD
3-position enableswitch		Not equipped	Equipped
ANSI/UL standard		Not compliant	Compliant
CE Mark	Compliant		
Display	20 characters x4 lines		
Surrounding air temp humidity	0-40 C, 10-90\% RH (non-condensing)		
Protectionstructure	I P54		
Weight	Approx 0.4 kg (excluding cables)		

PC Software (Windows only)

- Feature A software application that assists you in the initial startup of your system by offering functions for program/position input, test operation, monitoring, and more. Enhanced debugging functions help reduce the startup time.

■ Model IA-101-X—MW (with RS232C cable)

■ Model IA-101-XA—MW (with cable conforming to safety category4)

- Configuration

PC Software (CD)
CB-ST-A1MW050-EB

Model IA-101-X-USBMW (with USB conversion adapter + cable)

PC Software (CD)

Replacement Parts

All you need a replacement cable after the purchase of your product, specify the applicable model by referring to the information below.

ICSPA-BN/BL Series
 Catalogue No. 1208-E

Ihr Ansprechpartner für IAI-Produkte:
Schlüter Automation und Sensorik GmbH
Bergstr. 2
D-79674 Todtnau - Germany
Tel: +49 (0) 767199256 - 0
Fax: +49 (0) 7671 99256-50
Hotline: 0180-2-LINEAR
www.linearachsensysteme.de

[^0]: * 1: The load capacity changes according to the Y-axis stroke and Z-axis stroke. For details, check the page describing the type you are interested in

[^1]: ("1) Brake settings are available for vertical specification, but not for horizontal specification.
 (*2) When using the X -axis in opposite home specification, follow instructions for the XY combined direction.

